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We present experimental and theoretical results of the sound-wave—spin-wave interaction

in the spin reorientation region for the orthoferrite ErFeOs.

Near the transition temperatures

T,=87°K and T, =96.6°K, a longitudinal sound wave propagating along the c axis exhibits a
sound-wave—order-parameter interaction which is linear in the strain and quadratic in the or-

der parameter.

This leads to steplike discontinuities in the sound velocity. The experimen-

tally observed velocity change at T; and T, is 0.8%. This gives a magnetoelastic coupling
constant of | Byg-Bg; | ~18x10° erg/cm®. Attenuation peaks at T, and T, arise from the same
resonant interaction. Shear waves, with polarization vector along the a axis, exhibit velocity
dips at T, and T, indicating an interaction linear in the strain and the order parameter. A
theoretical fit to the velocity curve yields the magnetoelastic coupling constant | Bys | = 2.2
x10% erg/cm?®, Again, spin-wave damping leads to attenuation peaks at 7;and 7,. Finally,
shear waves, with polarization vector along the b axis, do not give any coupling to the order

parameter, but only a coupling to the optical branch of the spin-wave spectrum.

This leads

to a small noticeable sound-wave velocity change in the spin reorientation region. All these
effects can be quantitatively described by a linearized set of coupled spin-wave and sound-

wave equations of motion.

I. INTRODUCTION

Sound propagation near phdse transitions has
received considerable attention recently.! Near
order-disorder phase transition (e.g., a ferro-
or antiferromagnetic-paramagnetic transition) the
sound wave couples to the fluctuations (spin fluctu-
ation or spin energy density fluctuations in the case
of magnetic transitions), producing large critical
attenuation peaks and noticeable velocity changes,
which are only partly quantitatively understood so
far. 2

For displacive phase transitions, the situation is
quite different. In this case the fluctuations are
rather small, except in a small temperature region
close to 7,, the phase-transition temperature. 3
Near such a phase transition one observes mainly
resonant interactions between the phonon and the
soft mode (one-phonon—one-soft-mode processes)
giving rise to pronounced sound-velocity changes
and attenuation peaks, but not to critical effects
due to fluctuations. These characteristic effects
for displacive-type phase transitions are negligible
near order-disorder phase transitions because the
rather large fluctuations in the latter case over-
shadow all resonant sound-wave-soft-mode inter-
actions.

In this paper we should like to show experimental
results for a variety of effects due to the phonon—
soft-mode resonant interaction for a typical dis-
placive-type phase transition, the spin reorienta-
tion phase transition occurring in the orthoferrite
ErFe0;.* The magnetoelastic interaction allows

Do

different types of coupling for the different sound-
wave modes; namely, a sound-wave-order-param-
eter coupling which is quadratic or linear in the
order parameter. In each case we observe char-
acteristic velocity and attenuation effects which can
be quantitatively accounted for.

The spin reorientation phase transitions in the
orthoferrites are typical examples for displacive
Landau-type transitions where fluctuation effects
are negligible. ® Under the action of different tem-
perature-dependent anisotropy energies the weak
ferromagnetic moment rotates® from the ortho-
rhombic ¢ axis at T, to the orthorhombic a axis
at T,(T,>T,). This rotation occurs in the ac plane
due to a large asymmetric Dzyaloshinsky-type ex-
change interaction whose vector Dis perpendicular
to the ac plane. Y An energy density expression of
the form

E,=3K,c0s26 + K, cos40 (1)

is sufficient to describe the statics of such a phase
transition. 6 is the angle between the ¢ axis and the
weak ferromagnetic moment m, K, and K, are the
twofold and fourfold anisotropy constants discussed
below. For K,>0, m changes continuously from the
¢ to the a axis uponlowering the temperature, where-
as for K, <0, m jumps discontinuously from the ¢ to
the a axis, giving rise to hysteresis, characteristic
for first-order phase transitions. For the bulk of
the sample it is found that the spin reorientation
proceeds continuously in this temperature region
for ErFe0;, ® indicating K, >0. Furthermore, it

is found experimentally” that K, is rather weakly
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dependent on temperature, whereas K, varies
roughly linearly with T for T~ T,, T,, for SmFe0;.
One can readily obtain the static properties of this
phase transition by calculating 8E/86 and 82E /8 62

from Eq. (1). For K, >0 one finds
T>T,: sinf=0, -K,> 8K,
T,<T<T,: cos20=-K,/8K,, 64KZ>K> (2)
T<T,: cosf=0, K,z 8K, .

The equal signs in the stability expressions define
T,and T,. From Eq. (2) it follows that the appro-
priate order parameter is the angle 6 for T near
T,and 37— 6 for T near T,.

Associated with these phase transitions is the
occurrence of a soft mode, in this case the =0
spin-wave mode of the acoustic branch. This mode
has been calculated by various authors. 3~'° Itshows
(for zero external field) the characteristic features
of a soft mode. It goes to zero at T'; and T, thus
giving rise to an instability in the spin system.

It is mainly the interaction of a sound wave with
this soft spin-wave mode which we consider in this
paper. The sound-wave-spin-wave coupling is
naturally of the linear magnetoelastic type, since
the spin reorientation is driven by anisotropy en-
ergies. This is in contrast to the paramagnetic-
ferromagnetic phase transition, where the dominant
coupling mechanism is usually of the volume mag-
netostrictive type. 2

In Sec. II we first deal with the particular form
of the magnetoelastic coupling permitted by sym-
metry. Then we present a simple theoretical de-
scription for the expected velocity changes. Finally
we give a rather rigorous presentation of the equa-
tion of motion method, solving for the coupled spin-
wave—phonon modes. In the following sections we
describe the experimental setup and then present
the results for the sound-velocity and sound-atten-
uation changes. We will give a quantitative com-
parison of experimental and theoretical results.

II. THEORY
A. Magnetoelastic Interaction

The magnetoelastic interaction energy for or-
thorhombic symmetry has been given in the litera-
ture.!! Since the iron sites are crystallographi-
cally equivalent, we can write for the magneto-
elastic energy density, limiting ourselves for sound
propagation along the ¢ axis,

E

me

2 2 2 2 2 2
=€"[B33(Ol,1 + Oy, )+Bal(ax1 + 0y, )+B32(ay1 +Qy, )]
+€xBsslay 0, +oy,0,)+€,Bylay, a, +aya,) .

)

Here a, , a,,,..., are the direction cosines of the
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two sublattice magnetizations with respect to the
orthorhombic symmetry axis, €;; are components
of the strain tensor. Other terms involving €,,,
€,y, €,y are omitted because we only present experi-
mental results for ¢ axis propagation. The B3,
Bj;,, and Bj, constants are not independent of other
components of the magnetoelastic tensor. ' Since
the weak ferromagnetic moment m as well as the
sublattice magnetizations rotate as a function of
temperature, one has to transform E,, to a rotated
coordinate system. We choose this new coordinate
system in the usual way.®'° Denote by T,,S, and
T, , S, the perpendicular and parallel components

of the reduced sublattice magnetization vectors in
the ac plane and by Y, Y, the components in the b
direction; further assume the canting angle W of
the sublattice magnetizations to be small. (We
shall comment on W being small below.) Then we
gets-10

oy, =S, cosf — T, sinf, Oy, == S, cosf + Tysinb ,
a:q:Yl’ ayz=Y2 ’ (4)
a, =— 8§, sinf - T, cos®, a,z=Sz sin + T, cosé ,

where 6 is the angle between weak ferromagnetic
moment and ¢ axis as defined in the Introduction.
By considering only linear terms in T and Y we
get from (3)

E o= €,.B33 [(S2+5%) sin®0 + (S, T; +S, T,) sin26]
+€2:B31 [(S3+53) cos®0 - (S, T, +S, T,) sin26]
+€,,Bss [~ 3(S2+5%) sin20 - (S, T, +S, T) cos26]
+€,,Byy[-Y,S,sin0+Y,S,sind] . (5)

B. Thermodynamic Calculation of Velocity Changes

Beforewego into the ratherinvolved equation-of-
motion calculation, we present a simple calculation
for the velocity change of sound waves near dis-
placive phase transitions. Let us first consider
the upper phase transition (7,). For the equilib-
rium state we have ;)=1, (T;)=(Y,)=0. We de-
fine E =E(e;y, (S), (¥), (T)). From Eq. (5) it fol-
lows that the order-parameter—phonon coupling is
quadratic in the order parameter for longitudinal
waves in the vicinity of T,; E .= 2€,,(Bg; - Bs,)6>.
We can calculate the elastic constants by using
E=E,+Es+E,,, Eqs. (1) and(5), and E, = sc% €, .
With

2
Cs3 =Z—£‘— (€., 6(€,,)) and —z% =0,
we get for the elastic constants

C33=Cgy— (Bgy— Byy)’/4K, for T<T,,

(6a)

Ca3=cY for T>T,,
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i.e., the elastic constant c3; and hence the cor-
responding longitudinal sound velocity exhibits a
steplike discontinuity at 7,. Analogously for T,

we get
C33=Cgy— (Bgg— Byy)?/4K, for T>T,, (6b)
Cys=Cly for T<T,;.

One obtains such a result whenever the phonon-
order-parameter interaction is linear in the strain,
but quadratic in the order parameter. Another ex-
ample of exactly such behavior are the elastic con-
stants near the structural phase transition in
SrTi0,. 2" The equation-of-motion method pre-
sented in Sec. IIC gives, for the dominant term,
exactly the results of Eqs. (6). The experimental
results presented below exhibit such behavior.

For the shear waves with polarization vector R
along the a axis we obtain from Eq. (5) a phonon—
order-parameter coupling, linear in the order pa-
rameter E‘me =-—€,,Bs520. We therefore expect
quite different behavior than in the longitudinal
case. In fact, one expects that the shear-wave
elastic constant becomes soft because of a fre-
quency pulling due to this linear soft-mode-phonon
interaction. An analogous calculation as in the
longitudinal case gives the following:

2
Css=c(5)5"(_f—15;?2' s (7
where w, is the soft-mode frequency discussed be-
low. The equation-of-motion method discussed
below recovers essentially the same result. This
is precisely what one observes experimentally for
this configuration (see below).

Finally, for shear waves with polarization vector
R along the b axis, we do not get any phonon-order-
parameter coupling from Eq. (5). We therefore
expect no drastic effects for this configuration,
again borne out by the detailed calculation and by
the experimental results presented below.

C. Equation-of-Motion Method
1. Spin-Wave Spectra

We give here the calculation of velocity and at-
tenuation changes using the linearized coupled
equations of motion for spin waves and sound waves.
In this paper we treat the case of zero external
field, leaving field-dependent effects to a future
publication. We represent the spin system of the
orthoferrite by a system of two magnetic sublat-
tices, allowing therefore for optical spin-wave
modes. In order to keep the amount of algebra to
a minimum, we assume the canting angle W to be
small, only considering it up to first order and we
neglect the single-ion anisotropy constant A,,.
These simplifications do not affect our results in
any significant way. In fact, the dependence of
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such terms on the angle 6 for the soft mode is the
same as one of the other anisotropy terms and
therefore could be absorbed in those terms in the
final result. For the optical spin-wave branch,
we expect a more critical dependence on W and
A,,. But, since we do not use these optical modes
in any crucial way, we disregard their influence.
Then we get from Refs. 8-10, applying the trans-
formation (4) for the magnetic part of the energy
density,

Ep=(8,S3+ T Ty) (—E - 2WD) +EY, Y,
+(2WE - D) (S, To-S; T,)

- (A,,cos%0+A,,sin%0) (% +S2)

- (T%+ T3 (A,,sin%0 +A ,, cos®0)

+(8,T1+S,T) (A,,—A,,) sin26

+ 3K, [(S1- 6T%5%+S3 - 6S5T3) cos4d

~ 45, T, (S%= T?) sin46 — 45, T, (S5— T%) sind6] .
(8)

In this notation A,, and A ., are twofold anisotropy
constants (related to K, used above by A,,~A,,
=- 3 K,), E is the exchange constant, D is the
antisymmetric exchange constant. From Eq. (8)
follows the well-known fact? that the sublattice
magnetizations and the weak ferromagnetic mo-
ment are confined to the ac plane. It is this an-
isotropy with respect to the b axis which makes
the problem no longer axially symmetric and,
therefore, the spin-wave modes soft only at tem-
peratures T, and T, but not inbetween these
temperatures. Apart from constant terms Eq. (8)
reduces to Eq. (1) with

En=E,(§)=1,(T)=(¥)=0) .

Applying the equation of motion to Eq. (8) and
using Eq. (2) the following expressions result for
the spin-wave modes (see Appendix A):

(w1/7)2= (4E/Mg) [(Axx_A:z) c0s26 - 4Kb 00549] ’
(wa/?’)z = (4E/M§) [%(Axx"'A .u) + %(Axx"'A u)

X €0s20 - K, cos4b] . (9)

Here y is the gyromagnetic ratio. We emphasize
again that taking terms in W to higher order than
linear can change the expression for w,/y signifi-
cantly. In Fig. 1 we show the temperature depen-
dence of w,/y for typical values of the constants
used. These numerical constants are listed in
Table I. They represent the parameters withwhich
we shall make quantitative numerical comparisons
with our experimental results.

Although Eq. (9) gives, strictly speaking, only
the k=0 spin-wave modes, we can use them for
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FIG. 1. Temperature dependence of soft-mode fre-
quency wy/7v, calculated with the parameters from Table
I [see Eq. (9)]. The spin structure for the different
temperature regions is also indicated.

calculating the spin-wave-phonon interaction be-
cause typical phonon wave vectors are k~10® cm™,
for which the exchange terms ak? in the spin-wave
spectrum are still negligible,

2. Longitudinal Sound Waves Pyopagating in ¢
Direction

Next we calculate the coupled spin-wave-phonon
dispersion equation for the case of longitudinal
sound waves propagating along the ¢ axis. We de-
note this configuration by (k,,R.). We use the en-
ergy expressions of Egs. (5) and (8) plus an addi-
tional elastic energy term. Analogously to the
method given in Appendix A, we can set up coupled
equations of motion for the spin system. For the
sound wave we also have to consider, in addition to
an effective stress, 0,,=9E,,/8¢,,, a volume force
of the form M;8H3/9z. In Appendix B more details
of the calculation are given. From (B2) it follows
for the dominant term of the longitudinal sound ve-
locity that

ve=v —ZE(B33—B31)ZSin229
ot pv Mg (w,/7)*

(10)

This gives, with the aid of Eqs. (2) and (9),
v=v, for T<T;and T>T,,
v=0,- (By3—B3,)%/pv, 8K, for T,<T<T,. (11)

The result (11) is identical with Eq. (6) of the pre-
ceding section.
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3. Shear Waves Propagating in ¢ Divection
with Polarization Vector along a Axis

This configuration we denote by (k., R,). Inanal-
ogous fashion as above, we can calculate the
phonon-spin-wave dispersion spectrum for this
configuration. Details of the calculation are given
again in Appendix B. The result is, for small
changes in the sound velocity,

E cos?26
372 o (. NS
Mypv, (w1/7')

Apart from modulation factors E cos?26 this result
is equivalent to Eq. (7). Equation (12) has quite a
different form than Eq. (11). Whereas in Eq. (10)
the soft-mode parameters cancel in nominator and
denominator, resulting in Eq. (11), there is only

a soft-mode parameter in the denominator of Eq.
(12), which makes the shear sound velocity approach
zero in this particular geometry. Damping effects,
among other effects discussed below, however, will
only allow sharp dips in the sound velocity for this
configuration. This behavior was anticipated in
Sec. IIB.

v=v,-B . (12)

4. Sheav Waves Propagating in ¢ Divection
with Polarization Vector along b Axis

This configuration we denote by (k.,R,). Again
we defer the details of the calculation to Appendix
B. For small changes in sound velocity one gets

B2,E sin®0

V=0g=— .
PMovs(wz/‘)’)

s (13)
The sound velocity for this configuration is not
coupled to any soft-mode parameter. The only
significant temperature dependence results from
sin?6 [Eq. (2)] and from (w,/y)%. In principle, one
can infer from (13) information regarding the opti-
cal branch of the spin-wave spectrum.

5. Effects of Damping

So far we have neglected any effect due to soft-
mode damping. If damping is included we expect
to get noticeable effects in the sound velocity and,
in particular, we expect attenuation peaks to occur
wherever the sound-wave and spin-wave modes get

TABLE I. Magnetic constants for ErFeO; used for the
analysis (Refs. 4 and 7).

M, =440 G

E=22%10% erg/cm?®

D=4.4x10" erg/cm®

K, (T)=2.8%10°-3,10° T erg/cm®®
Ky=1.8x10° erg/cm®

p=8.07 g/cm®

Sublattice magnetization
Exchange energy
Antisymmetric exchange energy
Anisotropy energy: Twofold®

Fourfold
Density

2 The typical values of the anisotropy constants, near
the spin reorientation, were modified to fit the experi-
mentally observed T; and T, [see Table II and Eq. (2)].

P7T in °K.
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close, i.e., near T, and T,. We introduce damping
effects in a very simplified phenomenological man-
ner, by substituting for w,/y by w,/y+iAH, where
AH is a measure of the spin-wave linewidth. In

this way we get at least a qualitative picture of
damping effects. There are so many possible
damping mechanisms present (intrinsic damping,
sample inhomogeneity, phonon-spin-wave conver-

J

(a) longitudinal (k,,R,),

)
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sion losses, etc.) that a more sophisticated ap-
proach would not necessarily lead to an improve-
ment of the description of damping.

For small damping, i.e., w,/y> AH and still
w<w,, we get the following expressions for the
sound velocity and attenuation changes for the dif-
ferent sound-wave configurations after taking real
and imaginary parts:

. 2E (Bgs — Bgy) sin20 [(w/y)?— AH?]
t = - 3
velocity change v=v, Py, @/ (/7)) + 2AH7] (14a)
. 2kE(By; — B3;)?sin®20 2AH(w,/v)
attenuation a= ; 14b
nu M2 [(oy/y) + 2(wi/V)? 6H7] (140)
(b) shear wave (&, Ra),
, _ EBZ%cos’26 (wy/y)? - AH?
velocity change v=v,- oMo, (wl/-y)z[(wl/y)z+2AH2] , (15a)
attenuation a= 2kE B3 cos®26 20H w,/y (15b)
pMzvE (/v [(w/7)P+AHT

For shear-wave propagation with polarization vector in the b direction we do not expect any damping effects,

since w, does not enter Eq. (13).

III. EXPERIMENT

We shall give experimental results for ErFeO;
which exhibits the spin reorientation phenomenon
in the temperature region from 86 to 97 °K approx-
imately. The single crystals were grown by a flux
method®™ at the Weizmann Institute. The crystal
used in this research has dimensions of 8. 9x3X3
mm with its longest axis coinciding with the crys-
tallographic ¢ axis. Magnetization data on crystals
of the same batch gave magnetic constants in ac-
cordance with previous data.® Relevant data on
these crystals are gathered in Table I.

The two end faces of the crystal used were pol-
ished plane parallel to within optical accuracy.
Sound-wave propagation was studied in the fre-
quency range 30—-170 MHz. Except for the vicin-
ity of the transition temperatures, the echo pat-
tern was perfect, exhibiting more than 20 echos.
The velocity was measured using a phase compari-
son method described previously. ! Its resolution
in the present case was 1 ppm. A modulated echo
pattern, as is present in the vicinity of the transi-
tion temperatures, does not affect the accuracy of
these velocity measurements, since our method
employs a single echo at constant amplitude. The
sound-wave attenuation was measured using a cali-
brated attenuator. In this case the echo pattern
modulation affects the accuracy of the attenuation
measurements. Therefore, we took averages over

different echo amplitude differences, indicating in
the figures the spread of possible values by error
bars.

The temperature was monitored using a heater ar-
rangement withfeedback provisions. '* We could read
the temperature and keep it constant to 10 mdeg.

In Table I we list all pertinent physical constants
of the ErFeQ;crystal. It should be noted that the
quoted values vary in their reliability, especially
K, and K, are representative values only, since
these constants for ErFeO; are not known. How-
ever, they were adjusted [Eq. (2)] as to give
phase-transition temperatures at 7;=87 °K and
T,=96.6 °K, respectively.

We investigated three different sound-wave prop-
agation configurations as mentioned above: (a)
longitudinal (%,,R.), (b) shear wave with polariza-
tion vector along the a axis (., R,), and (c) shear
wave with polarization vector along the b axis
(kc ’ Rb)'

IV. RESULTS AND DISCUSSION

An over-all temperature dependence of the three
sound velocities for the temperature region 77—
300 °K is shown in Fig. 2. The absolute values of
the sound velocities at 300 °K are given in Table II.
The shear-wave velocity for the (., R,) configura-
tion shows even outside the spin reorientation re-
gion a rather unexpected temperature dependence.
This might be connected with the anomalous tem-
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FIG. 2. Temperature dependence of the sound velocity
changes Av/2° for the three configurations between 80
and 300 °K, normalized at T=300°K. The absolute values
of " (300 °K) are listed in Table II.

perature dependence of the weak ferromagnetic mo-
ment in this region.? In the following we shall pre-
sent and discuss the data in the phase-transition
region.

A. Longitudinal Sound Velocity

In Fig. 3 we show more detailed data for the
sound velocity in the phase-transition region. The
data was taken both by lowering and by raising the
temperature, thus ensuring that true second-order
transition behavior with no hysteresis effects was
present. The data shown in Fig. 3 clearly display
the features anticipated in Sec. II, namely, a step-
like discontinuity at the upper and lower phase-
transition temperatures. In fact, the transition is
somewhat broadened over ~ 2 °K. This can be due
to a number of reasons, the main one being sample
inhomogeneities. Although soft-mode damping
could also give rise to such a broadening [Eq. (14b)]
the value for the spin-wave linewidth, AH~100 Oe,
fitted to the attenuation data, is much too small to
account for this effect. From Fig. 3 one infers
transition temperatures of 7,~(98+1)°K and
T,~(86+1)°K. In fact, the shear-wave data pre-
sented in Fig. 4 give, with a better accuracy,
T,=96.6°K and T;=87°K. At these temperatures
one can actually see a kink in the slope of the ve-

b

TABLE II. Constants, deduced from this experiment.

Transition temperatures®

Longitudinal sound velocity
associated with

Shear sound velocity associated with

Shear sound velocity associated with

Magnetoelastic coupling constants

T,=87°K, 7,=96.6°K

¢33 ( T=300"°K), v,=5.85%10° cm/sec
55 (T=300°K), ;=3.33x10° cm/sec
€44 (T=300°K), vg=3.83x 10° cm/sec
| Byg=Bgy; | =18x10° erg/cm?®

| By | =2,2x10° erg/cm?

2The values for T; and T, were determined from Fig. 4.

FIG. 3. Longitudinal velocity changes for the configura-
tion (&, R,) in the phase-transition region for 30-MHz
sound waves. Solid line denotes theoretical result. o{
is the sound velocity at room temperature (Table II).

locity curves of Fig. 3. Depending on which choice
of transition temperatures one takes, the total ve-
locity change at the two transition temperatures is
0.6-0.8%. We use the bigger value of 0. 8% for the
evaluation, ascribing this small ambiguity again to
the broadening of the transition. With Egs. (6) or
(11) and the parameters listed in Tables I and II we
obtain for the effective magnetoelastic coupling con-
stant B3 — By, | ~ 18 X10° erg/cm®, There are no
magnetoelastic coupling constants or magnetostric-
tion constants available from other measurements
for this substance. In all the experiments an applied
field of ~ 50 Oe, applied in the ac plane while creating
a nearly single domain state, did not change this
zero-field result shown in Fig. 3, excluding any
possible domain effects.

3|x108 ! ' ]
o * **
Qe
>
s 2 . .
a o heating
e cooling
—theory
1+ -
| |
100 10

T°K]

FIG. 4. Shear-wave velocity change for the configura-
tion (g, R,) in the phase-transition region for 50-MHz
sound waves. Solid line denotes theoretical result. v}
is the sound velocity at room temperature (Table II).
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B. Shear Waves with Polarization Vector in ¢ Direction

Figure 4 shows velocity changes occurring for
shear waves in the configuration (k,,R,). In con-
trast to the longitudinal sound-wave result, we ob-

. serve pronounced dips in the sound velocity at the
transition temperatures T, and T,. As in the lon-
gitudinal case it is a beautiful manifestation of the
particular phonon-soft-mode coupling as discussed
in Sec. II. We can again take the representative
material constants from Table I and fit the experi-
mental curve by taking IBg|~2. 2x10°% erg/cm?®
using Eq. (12). This gives a fit in reasonable
agreement with experiment. Use of the alternative
equation (15a), with damping included, again gives
a fit indistinguishable from the one just discussed
except very close to 7T, and T,. Again we can con-
clude that it is not a reasonable soft-mode line-
width of AH ~ 100 Oe but rather again sample in-
homogeneities which probably account for the par-
tial smearing out of the dips in the vicinity of T,
and T,. Temperature cycling for this case also
did not reveal any hysteresis effects, thereby ex-
cluding again observable first-order phase-transi-
tion effects. In addition, an applied field of 50 Oe
again did not give any change of the zero-field data,
eliminating possible domain effects. It should be
noted that the velocity dip at T, is noticeably smaller
than the one at T,. This experiment is by far the
most accurate one to determine 7, and T,,.

C. Shear Waves with Polarization Vector in b Direction

Finally, in Fig. 5 we show velocity data for shear
waves in configuration (k,, R,). For this geometry
we predicted no spectacular effects, only a cou-
pling of the sound wave to the optical spin-wave
mode, which does not become soft. A rather
smooth temperature dependence of the velocity

T T I

a2 3
& 8010 !
g ! (b)
) |
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3 ! |
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|
1.5 —x1073 I |
[ . E |
o !
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2 Tt ."c. . !
L)
T.u..... . .
05
L | |
80 90 100
T(°K]
FIG. 5. (a) Shear-wave velocity change for the config-

uration (k,, R;) in the phase-transition region for 50-MHz
sound wave, vso is the sound velocity at room tempera-
ture (Table II). (b) Temperature dependence of the op-
tical spin-wave mode using results of (a) and Eq. (13).
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FIG. 6. Sound-wave attenuation changes in the spin
reorientation region for the three different configurations.
@: 50 MHz, A: 30 MHz. Solid lines denote theoretical
result using Eqgs. (14b) and (15b).

change is indeed observable from the data in Fig.

5. Equation (13) predicts a change in the sound
velocity at T, because of the modulation factor sin%g
which is 1 for T <T, but decreases continuously for
T >T, till it reaches 0 for T=T,. With a reasonable
value of By~ 4x10° erg/cm® we have determined
the temperature dependence of w, using Eq. (13).
As already pointed out in Appendix A, this provides
one experiment to determine w,, for cases where
other methods fail. However, as stressed before,
our various approximations, discussed in Sec. II,
make the predicted optical spin-wave frequency re-
sult only a qualitative one.

D. Attenuation Experiments

Figure 6 shows ultrasonic attenuation data for the
three sound-wave propagation configurations. It
can be seen that for the configurations (¢, R.) and
(k., R,) attenuation peaks in the vicinity of the tran-
sition temperatures 7', and T, show up. For the
(k,, Ry) configuration only a small step near T,
probably arising from a misalignment of our trans-
ducer and again from the modulation factor sin®6,
appears. From Fig. 6 one can see that the atten-
uation peak at T, is noticeably smaller than the one
at T, for the shear-wave case. A corresponding
asymmetry was also found in the velocity dips for
this configuration (see Fig. 4). Actually, the at-
tenuation peaks seem to display some structure
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as seen in Fig. 6. We have no satisfactory ex-
planation for this asymmetry and structure. Error
bars for the results close to 7', and T, indicate the
relative inaccuracy due to echo pattern modulation,
as explained before. These observations are in
qualitative agreement with our predictions (14b)
and (15b). For the configuration where there is

an attenuation peak, we attempted to fit Eqs. (14b)
and (15b) to the experimental results, using the
same constants from Tables I and II used in the
fits for the velocity curves with a damping line-
width of H~ 100 Oe. For the shear-wave config-
uration (k., R,) we get a fit shown in Fig. 6 which
is in rough qualitative agreement with the experi-
ment. For the longitudinal configuration, however,
theory predicts no attenuation for T'<7T, and T >T,,
the higher symmetry phases. This is the same
situation as in the longitudinal velocity case. This
discrepancy can probably again be explained by
sample inhomogeneities. Again domain effects
can be ruled out, because a small magnetic field

of 50 Oe did not change any of the attenuation curves.

Equations (14b) and (15b) predict a frequency
dependence which is approximately obeyed by our
experiments, as shown in Fig. 6 for the shear-
wave configuration (¢, R,) and other results up to
170 MHz not shown in the graph. No attempt is
made, however, to check this frequency dependence
in great detail, since our data are not good enough
to warrent such an effort, as was usually done in
the case of order-disorder phase transitions. 2

On the whole, it is encouraging that our attenua-
tion experiments can be explained at least qualita-
tively by taking the same constants used for the
velocity effects.

V. CONCLUSION

We have shown in this paper, both experimentally
and theoretically, how a sound wave interacts with
a soft mode near a displacive phase transition. A
resonant interaction between the sound wave and
the soft spin-wave mode exhibits a variety of effects
for different sound-wave configurations which have
been observed and shown in this paper for the spin
reorientation phase transition. (a) A longitudinal
sound wave, having a magnetoelastic coupling linear
in the strain and quadratic in the order parameter,
exhibits steplike discontinuities in the sound veloc-
ity near the phase transition. This has been ex-
perimentally observed in the case of the spin re-
orientation phase transition, as discussed in this
paper, as well as in the case of a structural phase
transition such as the one occurring'® in SrTiO,
near 7,~ 106 °K. This velocity effect is accom-
plished by an attenuation peak. (b) A shear wave
having a linear phonon-order-parameter coupling
becomes soft at a displacive phase transition. The
reason for it is the magnetoelastic coupling which
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pulls the phononlike branch of the coupled mag-
netoelastic wave down as the soft mode approaches
zero frequency. Damping effects and sample in-
homogeneities make the sound-wave velocity changes
finite. These velocity dips are accompanied by
attenuation peaks, both of which were observed in
good agreement with theoretical prediction. This
effect has no counterpart in structural phase tran-
sitions. (c) Shear waves in the configuration

(B¢, R,) have no coupling to the soft mode. In this
case a coupling to the optical branch of the spin-
wave spectrum is predicted and also borne out by
our experimental results. '

It seems that our description of a resonant pho-
non-soft-mode interaction can explain all of our
experimental results very well. The good agree-
ment between theory and experiment implies that
this resonant interaction is the dominant mechan-
ism for all these effects. One could think of other
coupling mechanisms applicable to these effects.
One of these would be a higher-order coupling in
the spin-wave variables, i.e., spin-wave scat-
tering via phonon creation and absorption. Since
the spin-wave mode becomes soft this effect could
lead even to singularities in the attenuation and
velocity changes. However, since this spin reori-
entation phase transition is a true Landau-type phase
transition with a critical region only very near tothe
transition temperature® T, [(T - T,)/T,~10%], this
effect would become apparent only in the close vi-
cinity of T,. However, sample inhomogeneities,
among other effects, make it impossible to observe
such effects. Similar considerations hold for the
structural phase transition in SrTiO;z although there
the critical region can occur for larger values of
(T-7T,)/T,.

Externally applied magnetic fields, larger than
the ones described in this paper, introduce an en-
ergy gap in the soft spin-wave mode. Depending
on the direction of the field the energy gap is larger
at one of the two transition temperatures. This ef-
fect can easily be observed both for attenuation and
velocity changes. One observes a decrease in the
elastic effect (velocity or attenuation anomaly) due
to an increase in the corresponding energy gap of
the soft mode. These effects will be discussed in
detail elsewhere. 2

Finally, it should be mentioned that the spin re-
orientation phenomena are rather general phenom-
ena in magnetic solids. Although the elastic effects
in the orthoferrites are particularly striking, as
shown in this paper, because of the existence of two
transition temperatures, weak ferromagnetic mo-
ment and spin rotation in a plane, similar effects
have or can be observed in other materials such
as, e.g., Gd,!® NdCos, 2° and Mn,Sb. %! A similar
analysis of the results in these substances will be
given elsewhere. %
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APPENDIX A

The equation of motion for the spin system is
given by

M,

=(yMXH9, Al
o -(YMXH®); (A1)
where

M OF

M—:):(Tiyyiasi)’ Hi=_a_1‘7";_ ’

and M, is the magnitude of the sublattice magne-
tization. This leads to the following determinant for
the variables (T, T,, ¥;, Y,) from the linearized
equations of motion:

“Yr, 0 -a E
Y
o “M, E -a
Y (A2)
- C E '&Mo 0
y

&Mo
Y

where
=—E - 2A,,co0s% - 24,,5in%0 + 2K, cos46 ,
c=E +2A,,—A,,) cos20 - 8K,cos40 .

With E »>A,,,A,,, K, we obtain Eq. (9) of the main
text. It should be noted that only A,,—A,,=~- 3K,
can be obtained from static or resonance experi-
ments, but not the individual A,, and A,,. In Ap-
pendix B we will show that certain sound-wave
modes can couple to the optical spin-wave mode,
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providing us, at least, in principle, with a method
to determine the individual A,,,A,,. Note that an
electromagnetic field couples only weakly to the
optical mode because y,~ v, for the iron sites in
the two sublattices.

APPENDIX B
1. Longitudinal Wave
The contribution to the volume force is

9 e
—%—’ —ag—i= - ik T, [(Ax—A,,) sin26 — 8K, sin46]
0
— ik Ty4; (2WE - D)

+2k R, (Bg; sin0 + B3, cos®d) ,

with R, the sound-wave displacement component and
assuming R,, T; Y, proportional to e™*“#"*? The
determinant for the variables (T, Ty, Yy, Y,, R,
reads

YWrm, o -a E 0

Y

0 ﬂM0 E -a 0

Y

-c E %MO 0 -1 =0,
; (B1)

E -c o M, -1
Y

g+h+l g+h+l 0O 0 WP-viRP+f

with a and ¢ defined in Appendix A, v, is the longi-
tudinal sound velocity

f=(4k%/p) (Bgy sin® + By, cos?) ,
g=—ik[(A,,~A,) sin20 — 6 K,sin40]
+ik (B3 — Bs,) sin26 |
h=ik (2WE - D) , 1 =ik (B3~ Bj,;) sin26.
Solving (B1) gives

(2= 02k24f) (WP = w}) (WP = WD) + 291 (1 +2) (E —a) [(w/¥)?+ (E +a) (E +¢)]=0 ,

and from this we get for the longitudinal phase velocity in the limit w < w,, w,,

2

4E (Bgy—Bj,)%sin®0 4E (By - Bg,

4

2 ;o2 2

v2=v5~=(Bg338in“6 + B4, c0s°0) —
1 p 33 31 ng (wl/'}/)z

) . .
oM (w0 i) [4,.—A,,) sin20 — 6K, sindd]. (B2)

In this expression the third term on the right-hand side is the dominant term. For our frequency range
w/y <30 G. Using B ~10" erg/cm® and the values listed in Tables I and II (in cm?/sec?) we get

4EB?

2 10 7 10
v9=35%x10", 4B/p<10°, ——F————7~10
! /e pM, (w1/')/)

and the last term ~ 10", so only the third term gives a noticeable contribution.

2. Shear Waves in (k.,R,) Configuration

In this case there is no volume force acting on the sound wave.

From Egs. (5) and (8) we again get the

determinant for the linearized equations of motion in the variables T,,7T,,Y,,Y,,R,,
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%DMO 0 -a

0 Z—;EM0 E
-c E z—wM0

Y
E -c 0
-—;M—OBss cos26 —;W;Bascosze 0
which upon evaluation gives
(0 = 02?) (0= ) (= ) — Bs COS20REY
p

results.

SOUND-WAVE—-SOFT-MODE

INTERACTION NEAR .-« 3697
E 0
-a 0
0 3(ik)Bgscos26 [=0, (B3)
L“’MO 3(ik) Bys cos26
0 wi-oip?

\2
w
[ZE (;) +(E +c) (Ea—‘-az)]= 0.

Here v, is the shear-wave velocity for this configuration.

In the limit w < w;, w, Eq. (12) of the main text

3. Shear Waves in (k. R, ) Configuration

From the energy expressions (5) and (8) we get the determinant for the linearized equations in the vari-

ables T1, Tz, Yl, YZ)RD)

which upon evaluation gives
B2, sin®0 k%y*

(w?=v2Rk?) (w? - w?) (W= wd) 5

?.Y‘*_’MO 0 -a E 3(ik) Byy sing
0 i—‘”MD E -a 3(ik) B 44 sind
-c E %wMo 0 0 =0, (B4)
E -c 0 i—wMo 0
Y
0 0 —&B“sine %B“ sind w?-v2k?

[(%)2@ +c)+(a—E)(E2—cz)] =0.

Here, v, is the shear-wave velocity for this configuration. In the limit w <w;, w, Eq. (13) of the main text

results.
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Experiments studying the velocity dependence of the transient field for !*°Pt in Fe and the

transient field for
the recent Lindhard-Winther theory.

194,196,198p¢ jn Gd have been carried out in order to make comparisons with
Agreement between theory and experiment is good con-

cerning the shape of the velocity dependence, but the experimental value is a factor of 2 larger
than theoretically predicted. A large precession due to the transient field (¢ =—51 +7 mrad)
has been found for Pt in Gd. A transient field precession for Pd and Cd in Gd has been computed

on the basis of recent radioactivity results.

The internal field for Pt in Gd has been measured

to be — 780 +120 kG, while former internal field values for Mo, Ru, and Hf in Gd have been

corrected for transient field effects.

I. INTRODUCTION

Recent angular precession measurements!'? of
nuclei implanted into polarized ferromagnetic back-
ings using the ion-implantation perturbed-angular-
correlation technique (IMPAC) have shown the exis-
tence of a large positive magnetic field. This field
is several megagauss in magnitude, parallel to the
external field, and acts for a time shorter than 1
psec. The origin of this so-called transient field
is now believed to be due to the scattering of polar-
ized electrons by the recoiling ion.

Lindhard and Winther,® using the idea of electron
scattering, have formulated a transient field theory
in which they predict the magnitude and velocity
dependence of the transient field acting on different
nuclei recoiling through different ferromagnetic
backings. The basic parameters of the Lindhard-
Winther theory which can be tested experimentally
are the transient field’s dependence upon the re-
coiling ion’s velocity and the dependence upon polar-
ized electron density in the ferromagnetic backing.
The former was tested by measuring the angular
precession of ®Pt implanted into Fe at different

velocities, while the latter was tested by measuring
the angular precession of 1%419%:198p¢ jmplanted into

Gd.

II. EXPERIMENTAL TECHNIQUE AND RESULTS

IMPAC has been described in detail in previous
publications. !** In the present experiment, heavy-
ion beams of oxygen and sulfur ions are used to
Coulomb excite and concurrently implant platinum
nuclei into a ferromagnetic backing.

Upon entering the ferromagnetic backing, the
recoiling nuclei experience a large aligned time-
dependent magnetic field H(). The excited nuclei
then precess with the Larmor frequency w(¢)
=— guyH(#) /7, where g is the nuclear g factor and
My is the nuclear magneton. After the nuclei be-
come stationary in the lattice, H(f#) becomes con-
stant in time. The only time dependence comes
from the transient field which is assumed to be zero
after the ion stops. Integrating w(#) over the life-
time 7 of the excited state and assuming that no
excited nuclei decay in flight, one obtains the inte-
gral precession



